317 research outputs found

    Frequency scaling of photo-induced tunneling

    Full text link
    The DC current-voltage characteristics, induced by a driving electric field with frequency Omega, of a one dimensional electron channel with a tunnel barrier is calculated. Electron-electron interaction of finite-range is taken into account. For intermediate interaction strengths, the non-linear differential conductance shows cusp-like minima at bias voltages integer multiples of hbar Omega / e that are a consequence of the finite non-zero range of the interaction but are independent of the shape of the driving electric field. However, the frequency-scaling of the photo-induced current shows a cross-over between Omega^{-1} and Omega^{-2}, and depends on the spatial shape of the driving field and the range of the interaction.Comment: 7 pages, EURO-TeX, 3 figures, to appear in Europhysics Letter

    Nonlinear electron-phonon coupling in doped manganites

    Full text link
    We employ time-resolved resonant x-ray diffraction to study the melting of charge order and the associated insulator-metal transition in the doped manganite Pr0.5_{0.5}Ca0.5_{0.5}MnO3_3 after resonant excitation of a high-frequency infrared-active lattice mode. We find that the charge order reduces promptly and highly nonlinearly as function of excitation fluence. Density functional theory calculations suggest that direct anharmonic coupling between the excited lattice mode and the electronic structure drive these dynamics, highlighting a new avenue of nonlinear phonon control

    Ultrafast relaxation dynamics of the antiferrodistortive phase in Ca doped SrTiO3

    Full text link
    The ultrafast dynamics of the octahedral rotation in Ca:SrTiO3 is studied by time resolved x-ray diffraction after photo excitation over the band gap. By monitoring the diffraction intensity of a superlattice reflection that is directly related to the structural order parameter of the soft-mode driven antiferrodistortive phase in Ca:SrTiO3, we observe a ultrafast relaxation on a 0.2 ps timescale of the rotation of the oxygen octahedron, which is found to be independent of the initial temperaure despite large changes in the corresponding soft-mode frequency. A further, much smaller reduction on a slower picosecond timescale is attributed to thermal effects. Time-dependent density-functional-theory calculations show that the fast response can be ascribed to an ultrafast displacive modification of the soft-mode potential towards the normal state, induced by holes created in the oxygen 2p states

    Evolution of dopant-induced helium nanoplasmas

    Get PDF
    Two-component nanoplasmas generated by strong-field ionization of doped helium nanodroplets are studied in a pump-probe experiment using few-cycle laser pulses in combination with molecular dynamics simulations. High yields of helium ions and a pronounced, droplet size-dependent resonance structure in the pump-probe transients reveal the evolution of the dopant-induced helium nanoplasma. The pump-probe dynamics is interpreted in terms of strong inner ionization by the pump pulse and resonant heating by the probe pulse which controls the final charge states detected via the frustration of electron-ion recombination

    Alternatively spliced tissue factor and full-length tissue factor protect cardiomyocytes against TNF-α-induced apoptosis

    Get PDF
    Tissue Factor (TF) is expressed in various cell types of the heart, such as cardiomyocytes. In addition to its role in the initiation of blood coagulation, the TF:FVIIa complex protects cells from apoptosis. There are two isoforms of Tissue Factor (TF): “full length” (fl)TF – an integral membrane protein; and alternatively spliced (as)TF – a protein that lacks a transmembrane domain and can thus be secreted in a soluble form. Whether asTF or flTF affect apoptosis of cardiomyocytes is unknown

    High temporal resolution parametric MRI monitoring of the initial ischemia/reperfusion phase in experimental acute kidney injury

    Get PDF
    Ischemia/reperfusion (I/R) injury, a consequence of kidney hypoperfusion or temporary interruption of blood flow is a common cause of acute kidney injury (AKI). There is an unmet need to better understand the mechanisms operative during the initial phase of ischemic AKI. Non-invasive parametric magnetic resonance imaging (MRI) may elucidate spatio-temporal pathophysiological changes in the kidney by monitoring the MR relaxation parameters T* and T, which are known to be sensitive to blood oxygenation. The aim of our study was to establish the technical feasibility of fast continuous T*/T mapping throughout renal I/R. MRI was combined with a remotely controlled I/R model and a segmentation model based semi-automated quantitative analysis. This technique enabled the detailed assessment of changes in all kidney regions during ischemia and early reperfusion. Significant changes in T* and T were observed shortly after induction of renal ischemia and during the initial reperfusion phase. Our study demonstrated for the first time that continuous and high temporal resolution parametric MRI is feasible for monitoring and characterization of I/R induced AKI in rats. This technique may help in the identification of the timeline of key events responsible for development of renal damage in hypoperfusion-induced AKI

    Diabetes Distress but Not Clinical Depression or Depressive Symptoms Is Associated With Glycemic Control in Both Cross-Sectional and Longitudinal Analyses

    Get PDF
    ObjectiveTo determine the concurrent, prospective, and time-concordant relationships among major depressive disorder (MDD), depressive symptoms, and diabetes distress with glycemic control.Research design and methodsIn a noninterventional study, we assessed 506 type 2 diabetic patients for MDD (Composite International Diagnostic Interview), for depressive symptoms (Center for Epidemiological Studies-Depression), and for diabetes distress (Diabetes Distress Scale), along with self-management, stress, demographics, and diabetes status, at baseline and 9 and 18 months later. Using multilevel modeling (MLM), we explored the cross-sectional relationships of the three affective variables with A1C, the prospective relationships of baseline variables with change in A1C over time, and the time-concordant relationships with A1C.ResultsAll three affective variables were moderately intercorrelated, although the relationship between depressive symptoms and diabetes distress was greater than the relationship of either with MDD. In the cross-sectional MLM, only diabetes distress but not MDD or depressive symptoms was significantly associated with A1C. None of the three affective variables were linked with A1C in prospective analyses. Only diabetes distress displayed significant time-concordant relationships with A1C.ConclusionsWe found no concurrent or longitudinal association between MDD or depressive symptoms with A1C, whereas both concurrent and time-concordant relationships were found between diabetes distress and A1C. What has been called "depression" among type 2 diabetic patients may really be two conditions, MDD and diabetes distress, with only the latter displaying significant associations with A1C. Ongoing evaluation of both diabetes distress and MDD may be helpful in clinical settings

    Terahertz-driven phonon upconversion in SrTiO 3

    Get PDF
    Direct manipulation of the atomic lattice using intense long-wavelength laser pulses has become a viable approach to create new states of matter in complex materials. Conventionally, a high-frequency vibrational mode is driven resonantly by a mid- infrared laser pulse and the lattice structure is modified through indirect coupling of this infrared-active phonon to other, lower-frequency lattice modulations. Here, we drive the lowest-frequency optical phonon in the prototypical transition metal oxide SrTiO3 well into the anharmonic regime with an intense terahertz field. We show that it is possible to transfer energy to higher-frequency phonon modes through nonlinear coupling. Our observations are carried out by directly mapping the lattice response to the coherent drive field with femtosecond X-ray pulses, enabling direct visualization of the atomic displacements
    corecore